

Data-Quality Improvements and Applications of Long-Term Monitoring of Ionospheric Anomalies for GBAS

Minchan Kim*, Jiyun Lee*†, Sam Pullen**, and Joseph Gillespie

KAIST*
Tetra Tech AMT[†]
Stanford University**
Federal Aviation Administration

ION GNSS 2012 Session C4, Paper #5 Nashville, TN 20 September 2012

Motivation, Previous Work, and Objective

- Continued monitoring of the lonosphere to ensure gradients larger than those included in the threat model are not present
 - 11 year solar cycle → we are now approaching the next solar maximum (2013 – 2015)
- Developed the Long Term Ionospheric Anomaly Monitor (LTIAM) to verify the LAAS CAT I threat model
 - Building ionosphere threat models for all regions where GBAS will be fielded in the future
- Selection criteria need to be defined to reduce processing time in both the automated procedure and the manual analysis/validation
 - The number of stations with poor GPS data quality also increases, as the total number of stations increases

Faulty Candidates Generated from LTIAM on a Nominal (Quiet) Day (26 May 2012)

Faulty anomaly candidates before removing stations with poor GPS data quality

Faulty Candidates Generated from LTIAM on a Nominal (Quiet) Day (26 May 2012)

Faulty anomaly candidates after removing stations with poor GPS data quality

Methodology of GPS Data Quality Determination and CORS Station Selection

The goal is to select a subset of CORS stations which optimally meet the three criteria

GPS Data-Quality-Measurement Algorithms

Input

RINEX file collected from a Station (Header and Observations)

LTIAM Pre-processing

IOD Cycle Slip Detection

- Data gap
- Large data jump
- LLI (Loss of Lock Indicator)

Outlier Detection

- Polynomial fit method
- Adjacent point difference method

TEQC algorithm

IOD Cycle Slip Detection

Cycle Slip
Detection using
Multipath Estimates

Percentage of Observations

RMS of Multipath on Code

Adaptive Filter algorithm

Receiver Noise Estimation on Code Measurement

 Least-mean-square adaptive algorithm

Output

GPS Data Quality
Measurement

Test Runs of GPS Data-Quality-Measurement Algorithm on Nominal Days

Quality parameters which affect the performance of LTIAM most are: Percentage of observations, # of IOD cycle slips, # of MP slips, # of outliers, # of Short arcs, Mean of MP1 & Mean of MP2

Tests conducted on 7
 consecutive days during
 which geomagnetic storm
 conditions were quiet

 Number of stations processed in CONUS: 1578

Day (UT)	K _P	D _{ST}
24 May 2012	2.0	-15
25 May 2012	2.3	17
26 May 2012	2.3	-6
27 May 2012	1.3	14
28 May 2012	2.3	23
29 May 2012	2.3	23
30 May 2012	2.3	16

 The statistics of quality measurements obtained from the tests are used to determine station selection criteria

IOD Cycle Slips (all satellites, per day, per station)

Number of IOD cycle slips occurring on each station per day

Mean number of IOD cycle slips over all 7 days and all stations: 37.98

# of IOD slips per day	> 50	> 100	> 500
# of stations (percentage)	192 (12.1%)	105 (6.1%)	20 (1.2%)

Stations with Poor GPS Data Quality

	IC	D cyc	cle slip	Р	er. of (Obs.	Short arc			Outlier			Mean of MP1		
Bad		Stn.	#		Stn.	%		Stn.	#		Stn.	#		Stn.	meter
Λ	1	bru5	5552	1	p702	18	1	bru5	5545	1	mion	281.86	1	defi	0.7244
A_{A}	2	sag5	1544	2	p699	38.33	2	COVX	1483.71	2	ls02	100.33	2	wach	0.718
	3	COVX	1529.43	3	ncwj	42.14	3	sag5	1466.43	3	frtg	67.71	3	ormd	0.7047
	4	ls02	1301.5	4	twhl	50.71	4	ls02	1256.17	4	jxvl	65.57	4	zoa2	0.696
•	5	mlf5	1063	5	okee	59.71	5	mlf5	1051	5	okee	59.71	5	zfw1	0.6852
'	6	kns6	862.29	6	barn	61	6	kns6	862.14	6	cpac	57	6	zla1	0.6797
•	7	loz1	832.29	7	wvbr	61	7	kew6	819.57	7	pltk	55.29	7	zau1	0.6766
	8	kew6	819.71	8	loz1	64.86	8	loz1	792.71	8	mipw	54.57	8	zob1	0.6461
	9	okee	801.57	9	ohfa	67	9	okee	763.57	9	njcm	52	9	zlc1	0.6346
	10	red6	767.57	10	sag6	67	10	red6	760.14	10	mihl	50.86	10	zab1	0.6337
	11	mion	766.71	11	hgis	68.86	11	drv6	705.86	11	hruf	47.57	11	zmp1	0.6335
	12	drv6	715	12	kysc	68.86	12	mion	697.57	12	napl	46.86	12	zse1	0.6331
	13	lou6	673.57	13	arm3	70	13	lou6	646.71	13	brig	45.14	13	zoa1	0.6297
	14	plo5	625.14	14	dqcy	71.14	14	det6	617.86	14	adri	44.43	14	red6	0.623
	15	det6	621.71	15	hamm	71.14	15	plo5	615.57	15	brtw	43.29	15	zma1	0.6226
**************************************	16	prry	598.29	16	negi	71.29	16	kew5	574.57	16	p671	41.14	16	loz1	0.6178

Impact on Ionospheric Delay/Gradient Estimation Station *OKEE*

OKEE, 5/24/2012							
IOD cycle slip (#) Per. of Obs. (%) Short arc (#) Outlier (#) MP1 (m) MP2 (m)							
801.57	59.71	763.57	59.71	0.4803	0.5490		

Determining Thresholds of Data Quality Parameters (IOD cycle slip)

of IOD cycle slips on each station per day, data collected for 7 days

1. Remove outliers and obtain a new (nominal) distribution

2. Determine threshold of data quality parameter through sensitivity analysis

Thresholds of Data Quality Parameters

# of stations removed in CONUS (out of 1587)	308 (19.4%)
# of faulty candidates removed on 05/26/2012 (out of 92)	81 (88.0%)

Need for Geometry Check on Each Station

Stations that significantly increase geometric observability of ionospheric anomalies should be retained despite poor data quaity

Criteria to Restore Stations Discarded by Data Quality Check

Coverage of stations before removing PRRY station

Coverage of stations after removing PRRY station

If the loss of coverage after discarding a station is more than 30% of original coverage, it is restored despite poor data quality

Results from CORS Station Selection

	Before the geometry check	After the geometry check
# of stations removed in CONUS (out of 1587)	308 (19.4%)	252 (15.9%)
# of faulty ionospheric anomaly candidates removed on 05/26/2012 (out of 92)	81 (88.0%)	81 (88.0%)

Historical Storm Database (2000 – 2005)

Day (UT)	K _P	D _{ST}	Geo. Storm Class	WAAS Coverage	Focus Region	
4/6/2000	8.3	- 287	Severe	None (pre-IOC)	NE Corridor	
4/7/2000	8.7	- 288	Extreme	None (pre-IOC)	NE Corridor	
7/15/2000	9.0	- 289	Extreme	None (pre-IOC)	N/A	
7/16/2000	7.7	- 301	Strong	None (pre-IOC)	N/A	
9/7/2002	7.3	-163	Strong	None (pre-IOC)	N/A	
10/29/2003	9.0	- 345	Extreme	~ 0%	N/A	
10/30/2003	9.0	- 401	Extreme	~ 0%	TX-OK-LA-AR	
10/31/2003	8.3	- 320	Severe	~ 0%	FL-GA	
11/20/2003	8.7	- 472	Extreme	~ 0%	ОН-МІ	
7/17/2004	6.0	- 80	Moderate	~ 68.8%	TX-OK-LA-AR	

Ionospheric Threat Space with Validated Ionospheric Anomalies

All 10 storm days were processed

4 of these days included events on this plot

Ratios of Validated Events to Automated Candidates

- When threshold is set to 300 mm/km
 - 13 validated events out of 53 candidates (on 1 day)
 - -13/53 = 0.2453 (24.5%)
- When threshold is set to 200 mm/km
 - 73 validated events out of 243 candidates (on 4 days)
 - -73/243 = 0.3004 (30.0%)
- Ratios are similar but generally increase as threshold is lowered
 - Receiver or data errors can be of any size
 - Reducing threshold includes more actual events

Automated Candidates from 50 – 200 mm/km (1)

Estimated Gradient vs. SV Elevation Angle

2929 automated candidates (not incl. those > 200 mm/km)

All 10 storm days generate results

4 days included on previous result provide 91.3% of these results

Automated Candidates from 50 – 200 mm/km (2)

Cumulative Distribution of Estimated Gradients

Distribution of Anomalous Gradients

- As expected, within the set of "anomalous gradients," lower values dominate.
- However, the ratio of valid events within the results from 50 – 200 mm/km is not known.
- Lower bound: assume 30% of results are valid (based on result above 200 mm/km).

```
- 2929 \times 0.3 \cong 879 + 26 \cong 905 valid events below 200 mm/km
```

73 / (905 + 73) => 7.5% of valid events are above 200 mm/km
 13 / (905 + 73) => 1.3% of valid events are above 300 mm/km

Upper bound: assume all results are valid

- 2929 + 26 \cong 2955 valid events below 200 mm/km

- 73 / (2955 + 73) => 2.4% of valid events are above 200 mm/km

- 13 / (2955 + 73) => 0.4% of valid events are above 300 mm/km

Summary

- A comprehensive method of GPS data quality determination has been developed to support ionospheric anomaly monitoring.
 - Method identifies and excludes CORS stations with poor data quality
 - 88% reduction of faulty anomaly candidates was achieved while removing only 16% of CORS stations
- This tool will also supply GPS observation data quality information to the broader navigation community.
 - Lists of CORS stations ranked by data quality will be available soon.
- Refinements to automated monitoring software enhance our understanding of past ionospheric events.
 - Over 10 storm days from 2000 2005, the vast majority of anomalous ionospheric spatial gradients were below 200 mm/km.

Acknowledgements

 Thanks to John Warburton and his team at the FAA technical center for their support

Thank you for your attention!